
International Journal of  Theoretical Physics, Vol. 13, No. 2 (1975), pp. 103-111 

The Electromagnetic Energy and Momentum of 
Finite Charged Bodies Moving at Constant Velocity 

ROGER STETTNER 

Department o f  Physics, Montana State University, Bozeman, Montana 59715 

Received: 15 November t973  

Abstract 

It is shown tha t  a purely electromagnetic,  divergence-free tensor  S #, can be defined for 
any electrically charged body which is held in equilibrium by some cohesive force and 
moving at some cons tan t  velocity. This tensor  appears. to represent  the electromagnetic 
ene rgy-momentum of  the body;  the integral ( l /e )  f SqdS/(dS/is the differential e lement  
of  any spacelike hypersurface)  is eMog z the electromagnetic f o u r - m o m e n t u m  of  the sys tem 
(M 0 is the  electromagnetic rest mass o f  the system, U t is the  four-velocity). The divergence- 
free proper ty  o f S  q depends only on Maxwelt 's  equat ion and the condi t ion of  uni form 
motion.  

It is suggested tha t  whatever the nature  o f  the cohesive forces within such a system 
the total stress-energy tensor will, in effect, break up in to  two parts  which are separately 
divergence-free: the  purely electromagnetic tensor, S ~1, and a tensor representing the 
ene rgy -momen tum of  the  cohesive forces. Just  as it makes  sense to speak of  the electro- 
magnetic  mass  of  a sys tem at rest wi thout  regard to the  cohesive forces, it makes  sense to 
talk about  the electromagnetic m o m e n t u m  of  the  system, when it is moving at cons tant  
velocity, wi thout  reference to the cohesive forces. 

1. Introduction 

The problem of how the electromagnetic energy of a body (apart from the 
non-electromagnetic energy" of the body), in equilibrium, transforms in special 
relativity has an extensive literature and is treated in most modern textbooks. 
Nevertheless, there still appears to be some unresolved issues. The electro- 
magnetic rest energy of a body, Mo c2 (the subscript zero refers to the rest 
frame of reference), is conventionally defined as the integral over all space of 
the squared magnitude of the electric field multiplied by (87r) -1, Usually one 
demands that the electromagnetic scalar potential, g0, vanish at infinity. The 
rest mass energy can then be represented as the integral of 0040/2 over the 
volume of the body; oo is the rest frame charge density. We would expect that 
when the body is examined in a reference frame (the observer's frame) in which 
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the body is viewed to be moving at a constant velocity, V (time varying veloci- 
ties are not considered in this paper), the description of its electromagnetic 
energy and momentum could be made in terms of a single four-vector pi where 

pi = cMot~i ( i .  1) 

(We adopt the convention that Latin indices take the values 0 to 3 (AT ° = ct) 
and Greek indices take the value 1 to 3; repeated indices are summed over their 
respective ranges.) Here pi is the four-velocity 3'(1, V/c) and 3' is (1 - V2/c2) -1/2. 
Unfortunately it is not a simple matter to separate the electromagnetic energy- 
momentum from the non-electromagnetic (cohesive) energy-momentum of a 
body. 

One usually defines the energy-momentum four-vector of a body, Pt i, from 
the total energy-momentum tensor, I ij, of that body. I f I  ij vanishes properly 
at infinity then Ganss's theorem in four dimensions combined with the equa- 
tions of motion of the body, I ij, j = 0 (a comma preceding j means differentia- 
tion with respect to the coordinate j) show that 

Pt i =-- tiJdSj (1.2) 
C 

s 

is not only conserved but independent of the spacelike hypersurface (Moiler, 
1952) dS i (normally the hypersurface (1, 0) d3X iS chosen for mathematical 
convenience; d3X is the three-dimensional volume element in the observer's 
frame of reference). 

For a charged body I ij is equal to the Maxwell stress-energy tensor plus 
contributions from non-electromagnetic forces (negative pressure for example). 
The contribution to I ij from the non-electromagnetic forces will be denoted 
by t ij. 

In order to define the electromagnetic energy-momentum without reference 
to other forces researchers have worked with the Maxwell stress-energy tensor 
alone. Abraham's (Jackson, 1962) definition of the electromagnetic energy- 
momentum, 

pi = --el f TiOd3X (1.3) 

is not a four-vector and so is deemed not to be satisfactory, Rohrlich (1960, 
1970) has succeeded in obtaining a four-vector having the desired form of 
equation (1.1) by specifying a particular hypersurface to integrate on. His 
definition is 

pi = ---cl f TiidS] (1.4) 

where 

asj = ,y2(_ 1, V/c)43x (1.5) 
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It would seem that one should also be able to obtain an energy-momentum 
four-vector for the electromagnetic portion of a body without reference to a 
specific hypersurface. In the first part of this paper, we will show that there 
exists a purely electromagnetic tensor S ~j, for any charged body in equilibrium, 
which is divergence-flee (S ij, j = 0). By Gauss's theorem we can then define a 
hypersurface invariant electromagnetic energy-momentum vector, 

= _1 f SiidS] (1.6) pi  
C d 

which has the form of equation (1.1). S ii will be defined in terms of the electro- 
magnetic potentials of the system and thus without reference to the cohesive 
forces. The divergence-free property depends only upon the field equations 
and the uniform motion. 

The question then arises as to how S i] is related to I ij. In the Appendix, it 
is shown that if t ii is the stress-energy tensor of a perfect fluid containing a 
negative pressure then, using the equations of motion, 

I e  = el~il~i + Si i  + Ki i  (1.7) 

where e is the rest energy density of the fluid and K ij is a divergence-flee tensor 
which vanishes when integrated over a spacelike hypersurface. The tensor K ij 
does not contribute to the energy-momentum of the system; the fluid mass 
and the electromagnetic mass can thus be viewed as contributing separately to 
the total energy-momentum of the system. The t i] for a fluid has the form: 

tq  = (e + P)l~itfi + P8 ij (1.8) 

where P is the pressure. (A system where the cohesive forces are represented 
by a stress energy tensor of the form of equation (1.8) corresponds to 
Poincare's fluid model of the electron (Moller, 1952, pp. 192-194). The 
analysis of the Appendix demonstrates that any rest frame system with an 
arbitrary spherical charge distribution-not just a rest flame sphere whose 
charge is uniformly distributed on the surface-can serve as a classical electron 
model if the repulsive electrostatic forces can be balanced by a negative pressure; 
this is one result of equation (1.7). The interesting thing about this fluid model 
for the cohesive forces is that t ij does not vanish if e --> 0 in equation (1.8). 
Thus, we are left with an electron whose total four-momentum is just given by 
the electromagnetic four-momentum [see equation (1.7), e --> 0] since the 
pressure does not contribute to the total momentum of the particle). 

If  one were able to write tensors t ij for forces other than pressure, the 
results would probably be the same. Iq  would have the same form as equation 
(1.7) where the total rest energy density, e', of the non-electromagnetic forces 
would replace e for the fluid; K i] would probably not contribute to the total 
energy-momentum of the system. Since e'llila i and S i] would be separately 
divergence-free, we have a rationale for speaking of the electromagnetic four- 
momentum of any rigid, uniformly moving object without reference to the 
cohesive forces. 
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2. The Energy-Momentum Four- Vector 

In this section we consider an electrically charged body, in internal static 
equilibrium, moving uniformly with a velocity V. The charge on the body is 
described by the charge density, o. We will show that a divergence-free tensor, 
S ij, expressed in terms of the electromagnetic potentials, (4, A), and the current 
vector, j i  can be defined. Defining the electromagnetic energy-momentum 
vector of the body by equation (1.6) we wilt obtain the usual form of an 
energy-momentum four-vector, as expressed by equation (1.1). We now define 
SiJ. The electromagnetic potentials for a body, every point of which is moving 
at the same constant velocity, are (Panofsky & Phillips, 1962; Landau & Lifshitz, 
1962) 

a i = 4(1, V/c) = 3,-14# i (2.1) 

where 

and 

gr(X~ t) d3X 
4(x ,  t) = I 

R ,I 
(2.2) 

R 2 = [ ( X  - X )  . V / I V l l  2 + 7 -z  ( X  - X )  x ( 2 . 3 )  

(X denotes the spatial coordinate vector in the observer's frame.) The current 
vector is defined by the equation 

j i  = (~(c, V) = ocldi/'~ (2.4)  

Sq is defined as 

siJ = (4C)-I(AiJ] + hiJ i )  (2.5)  

Substituting equations (2.1) and (2.4) into (2.5) we obtain 

S ij = (2')'2)-10"4/2i/-/-/ (2.6)  

If we express both o and 4 in terms of their respective rest system values, Oo 
and 4o, SO takes a very suggestive form. These transformations to the rest 
frame are given by 

COo = co7 -1, 4o = 47 -1 (2.7) 

and express the transformations of the zeroth four-vector components of the 
vectors j i  and A i, respectively (40 has the form of the usual Coulomb poten- 
tial). With the use of equation (2.7), (2.6) takes the form 

si i  = (4oOo/2)d~J (2.8) 

Since the electromagnetic mass in the rest frame, Mo, is defined by the equa- 
tion 

M 0 = (202) -1 f o040d3Xo (2.9) 
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Ooq~o(C22) -1 represents the electromagnetic rest mass density. Thus equation 
(2.8) has the form of the energy-momentum tensor of a body of rest massM o 
moving at constant velocity. 

It will now be shown that $6 is divergence-free. Because the system is in 
equilibrium, any quantity, Q, associated with a material particle remains con- 
stant in time. This is expressed by the equation 

dQ 
dt Q,~VC~+cQ, o (T/c)Q,i# i 0 (2.10) 

Taking the divergence of equation (2.6), substituting equation (2.10) into the 
resulting expression [where a and ~b replace Q in equation (2.10)], while noting 
that V is constant, it is easily seen that $6, i is just zero. Substituting equation 
(2.8) into equation (1.6) and taking dSj = (1, 0)d3X we find that 

pi  = (j~i/c2) f OoOol20d3X = Mocl fl  (2.11 ) 

where we have used the fact that t l °d3X = 7d3X = d3Xo . (Note that i f p  i is 
denoted by M(c, V) then from equations (2.6) and (1.6), M is expressed in the 
observer's coordinates, by 

m = ½c-2 f a~ d3X (2.12) 

where ~ is given by equation (2.2).) Equation (2.11) is the usual four-vector 
expression for the energy-momentum of a moving body. 

3. Concluding Remarks' 

We have shown that for a body held in equilibrium by some unspecified 
cohesive force, there exists a purely electromagnetic tensor S ij which can be 
used to define the electromagnetic energy-momentum vector without reference 
to a particular hypersurface if the body is moving uniformly. A relationship 
between S ij and the total energy-momentum tensor of the system was sugges- 
ted. This relationship would allow the cohesive and electromagnetic constitu- 
ents of the four-momentum of the system to be treated separately. Whether a 
similar tensor can be utilized in studying accelerated motion or motion within 
the framework of general relativity- may be worthy of consideration. 

Appendix  A 

It will be shown that the total energy-momentum tensor for a fluid system 
has the form 

t ij + 7 ij = e u i #  + S ii + L~J~ (A. 1) 

where tO is given by equation (1.8), S/j by equation (2.6) and T/j is the Maxwell 
stress-energy tensor given by 

T ii = (4~r)-l(FiSFJs - ¼6iiFSpFsp) (A.2) 
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In equation (A.2), F i~ is defined by 

F i~ =-Ai, i - Ai,/ (A.3) 

and 5 i /by  

i o o o) 
8i ]_= 1 0 0 (A.4) 

0 0 0 

0 0 1 

From equation (A. t )  one can see that L/ix is a symmetric tensor since all the ,X 
other terms in equation (A.1) are symmetric tensors. It is also clear from equa- 
tion (A. 1) that LIIxx will not contribute to the total energy-momentum vector 
if it vanishes sufficiently rapidly at infinity (see equation (1.2)). 

We proceed by reducing the left-hand side of  equation (A.1) with the aid of 
the equations of motion, and finding L!~ x explicitly in terms of P, V a and qS, 
in a particular but otherwise arbitrary frame of  reference. TiJ is first expressed 
in terms of V ~ and ~b. Substituting equations (2.1) and (2.10) (Q = ~) into 
equation (A.2) while noting that V a is a constant, yields 

8~rT °° = (4):02(V2/c 2 + 1) + (0,0)2(-3 + V2/c 2) (A.5) 

4aTO~ = V~/c [(~,~2 _ (q~,o)2] _ ~,oq~,3/72 (A.6) 

47rTO~ = VaV~/c2[(¢,x)~ - (0,o) 2] + q~,aq~,~/72 

+ [½5°~/3,2 ] [(~b, 9 2 -- (qS, o) ~1 (A.7) 

We now look at the (0, 0)-component of equation (A.1). From equation 
(1.8) we find that 

t oo + T OO = (e + e)~opo _ p + TOO 

o V2 
= epOp + - ~  72P + T oo (a .8)  

The last two terms on the right-hand side of  equation (A.8) are reduced to 
S oo + L ooc~ by means of  the equations of  motion: 

t,/i + T~: = 0 (A.9) 

By an argument similar to that which showed S/] to be divergence-free, it can 
be shown that 

[(e + p ) . i . q , / =  0 (A. 10) 

Using equation (A. 10), equation (A.9) reduces to 

(A.1 i )  
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Using equation (2.10), the (0)-component of equation (A. 11) becomes 

[ - ~  ( P -  TOO)+ T°~] =0  (1.12) 

With the use of equation (A. 12) it is easy to see that 

B ¢3 - T oG + V--~ T OO = V~P (A.13) 
C C 

where 

and X ¢ refers to the ~-component of the spatial coordinates. Multiplying equation 
(1.13) by (V~/c)~ 2 and substituting the result in equation (A.8) we find that 

t°°+T°°=e~°la°+3'2(T°°-V---~-~T°~) +V~B~72c (1.15) 

We now reduce the second term on the right-hand side of equation (A. 15). 
From equations (A.5) and (1.6) it is seen that 

-y2 (TOO Vc~ ) - - -  T °~ = C(q~/Srr(~,=~ - q~, oo)) (A.16) 
C 

where 

1 
C = ~ -  [(q~,a)(~,o) + ((~,o)(~VC~/c],~ (A.17) 

The second term on the right-hand side of(A. t6)  can be shown to be S °° by 
noting that our potentials satisfy Maxwell's equations in the Lorentz gauge. 
The Lorentz condition is expressed by the equation 

A{i = 0 (A.lS) 

Substituting equation (2.1) into equation (A. 18) while taking account of 
equation (2.10) we find that 

A i . = l  d-~=O (1.19) 
,l c dt 

This simply means that the scalar potential associated with a material particle 
does not vary with time. With equation (A.t8) substituted in Maxwell's equa- 
tions, we find that ~b satisfies the equation 

qb,c~c ~ - ~b,o o = --47ro (A.20) 
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Substituting equation (A.20) into equation (A. 16) and the result into equation 
(A. 15) we obtain the (0, 0) component of equation (A. 1) where 

V ~ 
L °°a = C + - -  3'2B~ (A.21) ,Or C 

and C and B ¢ are given by equations (A.17) and (A.14), respectively. 
The (0, a) and (a, ~3)-components of equation (A. 1) can be handled in much 

the same way as the (0, 0)-component. By means of the spatial part of the 
equation of motion (see equation (A.11)) we find that 

and 

t o~ + TO~ = e#Ol~a + 3"2 T~o _ V__~ ~ TaX + 3"2 _ _  D~x 
C C 

(~v~ v~v ~, ) 
tap + T ~ = e#~#~ + 7 2 - -  TaO TaX 

C C C 

3,2 + V~ T~O + Do~ V[3VXD~X 
c +c T 

(A.22) 

(A.23) 

where 

DO~=[X~(pse~x+ Tax - -  TC~O)] 
C ,X 

(A.24) 

By means of equations (A.6)-(A.7) it can be shown that 

3"2 (TO~O Vx ) va - - -  T ax = S °c~ + - -  C (A.25) 
C C 

and 

2(~V~Tao V~ Vx ) V(3 V(3V a 
- -  - T ax + - - T  a ° = S  ~ +  C (A.26) 

")' C C C C C 2 

where C is defined by equation (A. 17). We therefore see, by substituting equa- 
tion (A.25) into equation (A.22) and equation (A.26) into equation (A.23), 
that 

L 0 a x  - ,,/2 v x  o a X  + "U'a C (A.27) 
,X -- C C 

and 

La~x= DaX+ 3 '2 V~V a 
,x - ~  V(JVXD°& + c 2 - C (A.28) 
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where D c~ is defined by equation (A.24). If the spatial dependence ofLi~ x is 
examined it is seen that for large distances from the origin, R, LI]ax goes approxi- 
mately as 1/R3; L ip` does not, therefore, contribute to the energy-momentum 
vector of the system. It can also be shown explicitly that Liixx is divergence-free. 
The Lt,)~, x found in this appendix are just the K ii of equatior] (1.7), for a fluid 
system, in the observer's system of coordinates. 
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